Minimum Flows for the St. Marks River Rise

Rule Development Workshop

December 20, 2018
Statutory Requirements s.373.042, F.S.

What is an MFL? Limit at which further withdrawals will cause significant harm to the water resources or ecology of the area.

Purpose: To protect water resources and associated ecology. Provides information to support water supply planning and water use permitting evaluations.
Priority Waterbodies

Completion Dates of MFL technical assessments are shown in parentheses.
Enhanced Data Collection

• More than 60 sites
• Hydrology
 – Aquifer levels
 – River stage and flow
 – Spring flow
• Water Quality
 – Salinity
 – Temperature
Enhanced Data Collection

• Elevation Data
 – River channel
 – Floodplain

• Ecological Data
 – Vegetation Communities
 – Instream Habitat
Baseline Time Series

- No measurable impacts from withdrawals
- Baseline is period of record:
 - (October 1, 1956 – November 27, 2017)
1. Natural seasonal fluctuations in water flows or levels,
2. Non-consumptive uses, and
3. Environmental values associated with coastal, estuarine, riverine, spring, aquatic, and wetland ecology, including:

(a) Recreation in and on the water
(b) Fish and wildlife habitats and the passage of fish
(c) Estuarine resources
(d) Transfer of detrital material
(e) Maintenance of freshwater storage and supply
(f) Aesthetic and scenic attributes
(g) Filtration and absorption of nutrients and other pollutants;
(h) Sediment loads
(i) Water quality
(j) Navigation

"Water Resource Values" (WRVs)
Water Resource Value Metrics

• **Recreation**
 – Safe Power Boat Passage (2 ft x 30 ft)
 – Safe Canoe/Kayak Passage (1.5 ft Depth)

• **Fish and Wildlife Habitats**
 – Fish Passage (0.6 ft Depth)
 – Manatee Passage (3.8 ft x 3.8 ft)
 – Floodplain Wetland Inundation
 – Instream Woody Habitat Inundation

• **Estuarine Resources**
 – Low Salinity Habitats (Volume, Surface Area, Shoreline Length)
Hydrology Models

• Models used to quantify changes in spring flow and WRV metrics
 – River hydraulic model – spring flow effects on river stage and flow
 – Estuarine Model – spring flow effects on salinity

• Significant harm threshold: 15% reduction in metric
Results

<table>
<thead>
<tr>
<th>Spring Flow Range</th>
<th>Limiting Metrics</th>
<th>Allowable Flow Reduction (cfs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low (<400 cfs)</td>
<td>Dead Woody Debris Habitat</td>
<td>67</td>
</tr>
<tr>
<td>Medium (400 - 600 cfs)</td>
<td>Live Roots Habitat</td>
<td>42</td>
</tr>
<tr>
<td></td>
<td>Hardwood Hammock</td>
<td>33</td>
</tr>
<tr>
<td></td>
<td>Cypress Hardwood Swamp</td>
<td>34</td>
</tr>
<tr>
<td></td>
<td>Boat Passage</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td>Manatee Passage</td>
<td>50</td>
</tr>
<tr>
<td>High (>600 cfs)</td>
<td>Ironwood Hammock</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>Ash Swamp</td>
<td>101</td>
</tr>
</tbody>
</table>
Results

Graph showing the relationship between River Rise spring flow (cfs) and Exceedance Frequency. The graph includes data points for various metrics such as Boat Passage, Ash Swamp, Cypress Hardwood Swamp, Hardwood Hammock, Ironwood Hammock, Dead Woody Debris - Mean, Live Roots - Mean, and Manatee Passage. The most limiting metric is indicated with an arrow, showing an allowable reduction of 33 cfs.
Minimum Flow

- Most limiting metric protective of full range of flows
- Hardwood Hammock inundation: 33 cfs reduction when spring flow is 447 cfs
- Applied to long-term average daily spring flow (452 cfs)

<table>
<thead>
<tr>
<th>Long-term Daily Average Minimum Spring Flow (cfs)</th>
<th>Allowable Flow Reduction (cfs)</th>
<th>Percent Allowable Flow Reduction (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>419</td>
<td>33</td>
<td>7.3%</td>
</tr>
</tbody>
</table>
Peer Review

• Independent experts in Hydrology, Ecology, and Environmental Flows

• Scope of Peer Review
 – Supporting Data and Information
 – Technical assumptions
 – Procedures and Analyses
Peer Review Comments

“...The Panel supports and endorses the District’s approach to determining the minimum flow and final selection of the minimum flow for the St. Marks River Rise and Spring Run.”

Key Revisions

- Improved riverine model and provided additional documentation
- Removed boat launching metric
- Reduced boat passage depth
Evaluation of Need for Prevention or Recovery Strategy

- St. Marks River Rise currently meets the proposed minimum flow
 - No recovery strategy needed
- Effects of projected withdrawals through 2040 do not exceed available spring flow of 33 cfs
 - No prevention strategy needed
MFL Assessment

• MFL status anticipated to be assessed every 5 years
• Difference between 30-year average flow and the baseline flow compared to the available water of 33 cfs
• MFL anticipated to be reevaluated in 10 years
Rulemaking Schedule

November 1, 2018
Notice of Rule Development was published

December 20, 2018
Rule Development public workshop followed by 14 day public comment period

February 28, 2019
Anticipated Board review and approval of draft rule language

April 1, 2019
Deadline to publish Notice of Proposed Rule

End of May, beginning of June, 2019
Anticipated effective date of Proposed Rule
Thank You